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Exact explicit analytical expressions which give the natural frequencies and
mode shapes of a bending}torsion coupled beam with cantilever end condition are
derived by rigorous application of the symbolic computing package REDUCE.
The expressions are surprisingly concise and very simple to use. By way of
illustration in this paper, they are used to determine the natural frequencies and
mode shapes of a cantilever wing with substantial coupling between the bending
and torsional modes of deformation. The results are compared with exact
published results to con"rm the correctness and accuracy of the expressions. The
derived expressions can be used to solve bench-mark free vibration problems as an
aid in validating the "nite element and other approximate methods. They are also
intended for future applications in aeroelastic and/or optimization studies.
Computer implementation and a comparison of solution times show that there is
more than a four-fold advantage in c.p.u. time when using the explicit expressions
as opposed to the alternative numerical method involving determinant evaluation
and matrix manipulation. ( 1999 Academic Press
1. INTRODUCTION

Explicit analytical expressions for the frequency equations and mode shapes of a
Bernoulli}Euler beam with various end conditions have been available in the
literature for many years and can be found in standard texts, see for example,
Table 7-1 on p. 277 of reference [1]. Similar expressions for the frequency
equations and mode shapes of a Timoshenko beam [2, 3] and an axially loaded
Timoshenko beam [4] have also become available relatively recently, although it
should be recognized that the free vibration characteristics of such beams were
investigated some years ago using the dynamic sti!ness [5}8], "nite element [9] or
other methods [10], without resorting to the derivation of explicit frequency and
mode shape formulae.

The reported investigations on Bernoulli}Euler, Timoshenko and axially loaded
Timoshenko beams are all based on the assumption that the beam de#ects only in
0022-460X/99/270267#15 $30.00/0 ( 1999 Academic Press
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#exure and as a consequence, there is no coupling between the bending and
torsional deformations of the beam cross-sections. Such an assumption imposes
very serious restrictions on the free vibration analysis of beams for which the
bending and torsional deformations are inherently coupled due to non-coincident
mass and shear centres of the cross-sections. Examples include beams with &&Angle'',
&&Tee'', &&Channel'', &&Open Box'', and &&Aerofoil'' cross-sections. The free vibration
analysis of such beams is signi"cantly more complicated than that of
Bernoulli}Euler or Timoshenko beams (in #exure only), due mainly to the
bending}torsion coupling e!ect which leads to the formulation of a higher order
governing di!erential equation (usually the sixth order instead of the fourth).
Investigators of the problem have generally relied either on the direct solution of
the governing di!erential equation [11] and substitution of appropriate
end-conditions for displacements and forces in the dynamic sti!ness method
[12}14], or on the traditional "nite element and other approximate methods
[15, 16]. The derivation of explicit expressions for the frequency equation and the
corresponding mode shapes of a bending}torsion coupled beam is of quite
considerable complexity. The di$culty would appear to arise from the complex
nature of the problem which involves the algebraic expansion of determinants (for
the frequency equations), together with matrix inversion and multiplication (for the
mode shapes) of matrices whose elements are themselves complicated algebraic
expressions involving transcendental functions. With the advent of, and
advancement in, symbolic computing, it seems that this di$culty can be overcome.
In the sequel, it has now become possible to handle problems in matrix algebra
symbolically and to manipulate large expressions by simplifying them very
considerably. The main purpose of this paper is to derive exact analytical
expressions for the frequency equation and the corresponding mode shapes
of a uniform bending}torsion coupled beam with cantilever end condition,
using the symbolic computing package REDUCE [17, 18]. These expressions
can be used to solve both free and forced vibration problems of bending}
torsion coupled beams and can also be used to carry out bench mark studies
to validate the "nite element and other approximate methods. The explicit ex-
pressions are particularly useful in the context of aeroelastic analysis, and/or
in optimization studies for which repetitive sensitive analyses are often re-
quired to establish design trends when principal beam parameters are varied.
(Note that earlier discussions on the frequency and mode shape expressions
of a bending}torsion coupled beam have been con"ned to the relatively trivial
case where the beam is simply supported at both ends, so that the governing
mode shapes are sine waves, see pp. 471}475 of reference [19]. In contrast,
the present paper signi"cantly advances the discussion through the introduction
of algebraically very general mode shapes, where the analysis of response is far
less transparent than in the earlier studies.) The use of the explicit expressions
is shown to have more than four-fold advantage in c.p.u. time when compared
with the alternative numerical method based on the determinant evaluation and
matrix manipulation.

The theory developed in this paper is applied to a cantilever wing [20] with
substantial coupling between the bending and torsional modes of deformation. The
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results are compared with those available in the literature [20, 21] and some
conclusions are drawn.

2. THEORY

An important example of a bending}torsion coupled beam is an aircraft wing as
shown in Figure 1. The wing has a length ¸ and its mass and elastic axes, which are
respectively the loci of the mass centre and the shear centre of the wing
cross-sections, are shown in the "gure, with xa being the distance of separation
between them (xa is positive in the positive direction of X). In the right-handed
co-ordinate system shown in Figure 1, the elastic axis (which is coincident with the
>-axis) is allowed to de#ect out of plane by h(y, t), whilst the cross-section is
allowed to rotate (or twist) about OY by t(y, t), where y and t denote distance from
the origin and time respectively. Although the speci"c case of an aircraft wing is
chosen as an example, the theory developed has much wider applications.

Using bending}torsion coupled beam theory, the governing partial di!erential
equations of the motion of the wing shown in Figure 1 have been given amongst
others, by Dokumaci [11], Hallauer and Liu [12] and Banerjee [14]. Using the
notation of Figure 1, the equations are presented here as follows: (Note that in the
derivation of these equations, St. Venant's torsion theory has been used so that the
cross-section is allowed to warp without restraint, and also the e!ects of shear
deformation and rotatory interia are assumed to be small and hence are not
included in the derivation.)

EI h@@@@#mhG!mxatG"0 (1)

and

GJtA#mxahG!IatG"0, (2)

where EI and GJ are respectively the bending and torsional rigidities of the beam,
m is the mass per unit length, Ia is the polar mass moment of inertia per unit length
Figure 1. Co-ordinate system and notation for a bending}torsion coupled beam.



270 J. R. BANERJEE
about the>-axis (i.e., an axis through the shear centre) and primes and dots denote
di!erentiation with respect to position y and time t respectively.

If a sinusoidal variation of h and t, with circular frequency u, is assumed, then

h(y, t)"H(y) sinut, t(y, t)"W (y) sinut, (3)

where H(y) and W(y) are the amplitudes of the sinusoidally varying vertical
displacement and torsional rotation respectively.

Substituting equation (3) into equations (1) and (2) gives

EIH@@@@!mu2H#mxau2W"0, (4)

GJWA#Iau2W!u2mxaH"0. (5)

Equations (4) and (5) can be combined into one equation by eliminating either
H or W to give the sixth order di!erential equation as

=@@@@@@#(Iau2/GJ)=@@@@!(mu2/EI)=A!(mu2/EI)(Iau2/GJ)(1!mx2a/Ia)="0,

(6)

where

="H or W. (7)

Introducing the non-dimensional length,

m"y/¸ (8)

Equation (6) may be written in the non-dimensional form as

(D6#aD4!bD2!abc)="0, (9)

where

a"Iau2¸2/GJ, b"mu2¸4/EI, c"1!mx2a /Ia (10)

and

D"d/dm (11)

The solution of the sixth order di!erential equation (9) is obtained as [14]

=(m)"C
1
cosh am#C

2
sinh am#C

3
cosbm#C

4
sin bm#C

5
cos cm#C

6
sin cm,

(12)
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where C
1
}C

6
are constants and

a"[2(q/3)1@2 cos(//3)!a/3]1@2,

b"[2(q/3)1@2 cosM(n!/)/3N#a/3]1@2,

c"[2(q/3)1@2 cosM(n#/)/3N#a/3]1@2, (13)

with

q"b#a2/3

and

/"cos~1[(27abc!9ab!2a3)/M2(a2#3b)3@2N]. (14)

=(m) in equation (12) represents the solution for both the bending displacement
H and the torsional rotation W with di!erent constant values. Thus,

H(m)"A
1
cosh am#A

2
sinh am#A

3
cosbm#A

4
sin bm#A

5
cos cf#A

6
sin cm,

(15)

W(m)"B
1
cosh am#B

2
sinh am#B

3
cosbm#B

4
sinbm#B

5
cos cf#B

6
sin cm,

(16)

where A
1
}A

6
and B

1
}B

6
are the two di!erent sets of constants.

It can be readily veri"ed by substituting equations (15) and (16) into
equations (4) and (5) that constants A

1
}A

6
and B

1
}B

6
are related in the following

way:

B
1
"kaA1

, B
3
"kbA3

, B
5
"kcA5

,

B
2
"kaA2

, B
4
"kbA4

, B
6
"kcA6

, (17)

where

ka"(b!a4)/bxa , kb"(b!b4)/bxa , kc"(b!c4)/bxa . (18)

The expressions for the bending rotation h (m), the bending moment M (m), the
shear force S (m) and the torque ¹(m) can be obtained from equations (15) and (16) as
[14]

h(m)"H@(m)/¸)"(1/¸)MA
1
a sinh am#A

2
a cosh am!A

3
b sinbm#A

4
b cosbm

!A
5
c sin cm#A

6
c cos cmN, (19)
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M(m)"!(EI/¸2)HA (m)"!(EI/¸2)MA
1
a2 cosh am#A

2
a2 sinh am!A

3
b2 cosbm

!A
4
b2 sinbm!A

5
c2 cos cm!A

6
c2 sin cmN, (20)

S (m)"!M@ (m)/¸"!(EI/¸3)MA
1
a3 sinh am#A

2
a3 cosh am#A

3
b3 sinbm

!A
4
b3 cosbm#A

5
c3 sin cm!A

6
c3 cos cmN, (21)

¹(m)"(GJ/¸)W@(m)"(GJ/¸)MB
1
a sinh am#B

2
a cosh am!B

3
b sinbm

#B
4
b cosbm!B

5
c sin cm#B

6
c cos cmN. (22)

2.1. FREQUENCY EQUATION

The end conditions for the cantilever beam are as follows:

at the built-in end (i.e., at m"0): H"0, h"0 and W"0, (23)

at the free end (i.e., at m"1): S"0, M"0 and ¹"0. (24)

Substituting equation (23) in equations (15)}(19), and (24) in equations (20)}(22)
gives

1 0 1 0 1 0

0 a 0 b 0 c

ka 0 kb 0 kc 0

!a3S
ha !a3C

ha !b3Sb b3Cb !c3Sc c3Cc
a2C

ha a2S
ha !b2Cb !b2Sb !c2Cc !c2Sc

akaSha akaCha !bkbSb bkbCb !ckcSc ckcCc

A
1

A
2

A
3

A
4

A
5

A
6

"0,

(25)

where

C
ha"cosh a, Cb"cosb, Cc"cos c,

S
ha"sinh a, Sb"sinb, Sc"sin c. (26)

Equation (25) may be written in matrix form as

BA"0. (27)
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The necessary and su$cient condition for non-zero elements in the column
vector A of equation (27) is that D"DBD shall be zero, and the vanishing of
D determines the natural frequencies of the system in the usual way. Thus, the
frequency equation for the cantilever can be obtained for the non-trivial solution as

D"DBD"0. (28)

Expanding the 6]6 determinant D of B algebraically is quite a formidable task
and became more feasible with the recent advances in symbolic computing. Thus
most of the work reported here, was carried out using the software REDUCE
[17, 18] in expanding the determinant DBD, and more importantly in simplifying the
expression for D. The "nal expression obtained for D is given below which is not
necessarily in the shortest possible form, but is surprisingly concise.

D"l
2
(j

1
#g

1
#m

1
)#l

3
(j

2
#g

2
!m

2
)!l

1
(j

3
#g

3
!m

3
)

!k
1
e
1
!k

2
e
2
!k

3
e
3
#d

1
#d

2
#d

3
, (29)

where

k
1
"ka#kb , k

2
"kb#kc , k

3
"kc#ka , (30)

l
1
"ka!kb , l

2
"kb!kc , l

3
"kc!ka , (31)

j
1
"a4(kbCb!kcCc), j

2
"b4(kcCc!kaCha), j

3
"c4 (kbCb!kaCha),

(32)

m
1
"a2ka(b2Cb!c2Cc), m

2
"b2kb(a2Cha#c2Cc), m

3
"c2kc(a2Cha#b2Cb),

(33)

g
1
"a3S

ha(bkcSbCc!ckbCbSc),

g
2
"b3Sb(ckaChaSc#akcShaCc),

g
3
"c3Sc(akbShaCb#bkaChaSb), (34)

e
1
"abkcCc(abC

haCb#c2S
haSb),

e
2
"bckaCha(a2SbSc!bcCbCc),

e
3
"cakbCb(acChaCc#b2S

haSc), (35)
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d
1
"2a2C

haCbCc(c2k2b#b2k2c ),

d
2
"2abckcSc(akbChaSb#bkaShaCb),

d
3
"2bc2kaCc(akbShaSb!bkaChaCb), (36)

with a, b, c and ka , kb , kc and C
ha , Cb , Cc , Sha , Sb , Sc already de"ned in equations (13),

(18) and (26) respectively. Note that it can be readily veri"ed with the help of
equations (10), (12) and (13) that the value of the determinant D"DBD is zero when the
frequency (u) is zero. This known value of D"DBD"0 at u"0 (which corresponds
to a beam with no inertial loading, i.e., at rest). can always be used to avoid any
numerical problem of over#ow at zero frequency when computing the value of D.
Thus for any other (non-trivial) values of u, the expression for D given by equation
(29) can be used in locating the natural frequencies by successively tracking the
changes of its sign.

2.2 MODE SHAPES

Once the natural frequencies u
n
are found from equation (28), the modal vector

A (in which one element may be "xed arbitrarily) is found in the usual way, namely by
deleting one row of the sixth order determinant and solving for the "ve remaining
constants in terms of the arbitrarily chosen one.

Thus, if A
1

is chosen to be the one in terms of which the remaining constants
A

2
}A

6
are to be expressed, as in the present case, the matrix equations (25), will take

the following reduced order form (Note that terms relating to A
1

are taken to the
right-hand side.):

0 1 0 1 0

a 0 b 0 c

0 kb 0 kc 0

!a3C
ha !b3Sb b3Cb !c3Sc c3Cc

a2S
ha !b2Cb !b2Sb !c2Cc !c2Sc

A
2

A
3

A
4

A
5

A
6

"

!1

0

!ka
a3S

ha
!a2C

ha

A
1
.

(37)

The symbolic computing package REDUCE [17, 18] was further used to solve
the above system of equations giving the following mode shape coe$cients in
terms of A

1
:

A
2
"A

1
[bc(/

1
#c2l

1
p
3
!b2l

3
p
2
)/s],

A
3
"A

1
[l

3
/l

2
],
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A
4
"A

1
[ca(!/

2
!c2l

1
i
3
#a2l

2
i
1
)/s],

A
5
"A

1
[l

1
/l

2
],

A
6
"A

1
[ab(/

3
#b2l

3
i
2
!a2l

2
p
1
)/s], (38)

where l
1
, l

2
and l

3
have already been de"ned in equations (31) and the following

further variables are introduced to compute the parameters within the square
brackets:

f
1
"aS

ha#bSb , f
2
"bSb!cSc , f

3
"cSc#aS

ha , (39)

q
1
"a2C

ha#b2Cb , q
2
"b2Cb!c2Cc , q

3
"c2Cc#a2C

ha , (40)

p
1
"a2!abS

haSb#b2C
haCb , p

2
"b2!bcSbSc!c2CbCc ,

p
3
"c2!bcSbSc!b2CbCc , (41)

i
1
"a2!acS

haSc#c2C
haCc , i

2
"b2#abS

haSb#a2C
haCb ,

i
3
"c2#acS

haSc#a2C
haCc , (42)

/
1
"a2l

2
(q

2
C

ha!af
2
S
ha), /

2
"b2l

3
(q

3
Cb#bf

3
Sb),

/
3
"c2l

1
(q

1
Cc#cf

1
Sc) (43)

and

s"abcl
2
(a2f

2
C

ha!b2f
3
Cb#c2f

1
Cc). (44)

Note that a, b, c, ka , kb , kc , C
ha , S

ha , Cb , Sb , Cc and Sc appearing in
equations (39)}(44) are given by equations (13), (18) and (26) but must be calculated
for the particular natural frequency u

n
at which the mode shape is required.

Thus, the mode shape of the bending}torsion coupled beam with cantilever end
condition is given in explicit form by rewriting equations (15) and (16) with the help
of equations (17), (18) in the form

H(m)"A
1
(cosham#R

1
sinham#R

2
cosbm#R

3
sinbm#R

4
cos cm#R

5
sin cm),

(45)

W(m)"A
1
(ka cosh am#R

1
ka sinh am#R

2
kb cos bm#R

3
kb sin bm

#R
4
kc cos cm#R

5
kc sin cm), (46)
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where the ratios R
1
, R

2
, R

3
, R

4
and R

5
are respectively A

2
/A

1
, A

3
/A

1
, A

4
/A

1
,

A
5
/A

1
and A

6
/A

1
, and follow from equations (38).

2.3. DEGENERATE CASE (x
a
"0)

The degenerate case of the above theory reduces to the Bernoulli}Euler theory
when the term xa (i.e., the distance between the mass and elastic axes) which
(inertially) couples the bending displacement and torsional rotation is set to zero.
This leads to separate (uncoupled) bending and torsional frequency equations and
mode shapes of a (Bernoulli}Euler) cantilever beam as follows.

It is evident from equation (10) that c"1 when xa is zero. Thus the governing
di!erential equation (9) for the degenerate case becomes

(D6#aD4!bD2!ab)="0. (47)

Using simple factorization rules for di!erential operators with constant
coe$cients, equation (47) can be written as

(D4!b)(D2#a)="0. (48)

The above splits into two independent di!erential equations, one corresponding
to bending displacement (H) and the other corresponding to torsional rotation (W)
as follows:

(D4!b)H"0 (49)

and

(D2#a)W"0. (50)

The solutions of the di!erential equations (49) and (50) are respectively given
by [1]

H (m)"A
1
cosh am#A

2
sinh am#A

3
cos am#A

4
sin am (51)

and

W (m)"B
1
cos cm#B

2
sin cm, (52)

where

a"(b)1@4"¸(mu2/EI)1@4 (53)
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and

c"Ja"u¸JIa/GJ. (54)

The derivation of the frequency equations and mode shapes is now a standard
procedure [1] which can be accomplished by applying the boundary conditions of
equations (23) and (24) for a cantilever to the general solutions for bending
displacements and torsional rotations of equations (51) and (52) and to the
corresponding expressions for bending slope, bending moment, shear force and
torque given by equations (19)}(22). For completeness, the expressions for the
frequency equations and mode shapes of the degenerate case leading to the
Bernoulli}Euler beam in bending and torsional natural vibration are respectively
given below.

2.3.1. Bending vibration

Frequency equation:

cosh a cos a#1"0 (55)

from which the values of a yield the natural frequencies (see equation (53)) in free
bending vibration.

Mode shapes:

H(m)"A
1
[(cosh am!cos am)#R

1
(sinh am!sin am)], (56)

where

R
1
"(sin a!sinh a)/(cos a#cosh a)"!(cos a#cosh a)/(sin a#sinh a). (57)

Note that the values of a in equations (56) and (57) must be calculated at the
natural frequencies for which the mode shapes are required (see equation (53)).

2.3.2. ¹orsional vibration

Frequency equation:

u
n
"

(2n!1)n
2¸

JGJ/Ia, (58)

where n"1, 2, 3, 4,2 denotes the order of the torsional natural frequency of the
cantilever beam.

Mode shapes:

W
n
"B

2
sin c

n
m, (59)

The value of c
n
in equation (59) must be calculated using the natural frequency u

n
in place of u in equation (54).
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It is worth noting that for this degenerate case the three roots a, b and c, given by
equations (13) for the general case, reduce to two coincident roots a("b) and the
third root being di!erent is c. A proof that the condition for a"b is c"1 (i.e.
xa"0), is given in Appendix A.

3. DISCUSSION OF RESULTS

An illustrative example on the application of the frequency equation and mode
shapes derived above is chosen to be that of an aircraft wing with cantilever
end-condition, as discussed in reference [20, 21]. The data used for the wing are: (i)
EI"9.75]106 Nm2, (ii) GJ"9.88]105 Nm2, (iii) m"35.75 kg/m, (iv)
Ia"8.65 kgm, (v) xa"0.18 m and (vi) ¸"6 m. The determinant D of the matrix
B of equation (25) was computed both numerically and using the analytical
expression of equation (29), for a range of frequencies. Both sets of results were
found to agree up to machine accuracy. The plot of D against frequency (u) is
shown in Figure 2. The "rst two natural frequencies are identi"ed as 49.6 and
97.0 rad/s which agree completely with the exact dynamic sti!ness results of
reference [21]. The mode shapes for the two natural frequencies were next
computed by using the analytical expressions of equations (45) and (46). These were
further checked to machine accuracy by solving the system of equations in equation
(37) numerically, using the computational steps of matrix inversion and
multiplication. These modes are shown in Figure 3 and are in complete agreement
with the modes shown in reference [21]. In order to demonstrate the substantial
computational advantage of the proposed method, the determinant D was
computed both numerically and analytically for a large number of iterations, each
performed at a di!erent frequency. The recorded elapsed c.p.u. time on a SUN
(Ultra-1) workstation is shown in Table 1. It is clearly evident that programming
the explicit expression for D has more than four-fold advantage over the numerical
method.
Figure 2. The variation of D against frequency (u).



Figure 3. Coupled bending}torsional natural frequencies and mode shapes of an aircraft wing:
***** bending displacement (H); - - - - - torsional rotation (W).

TABLE 1
c.p.u. time on a S;N (;ltra-1) computer using Fortran

Number of iterations c.p.u. time (s)
(number of frequencies) Numerical method Explicit expression

500 0)076 0)018
1000 0)149 0)035
2500 0)367 0)086
5000 0)761 0)177
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4. CONCLUSIONS

Exact frequency equation and mode shape expressions for a bending}torsion
coupled beam with cantilever end condition have been derived using the symbolic
computing package REDUCE. The correctness of the expressions has been
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checked by numerical results which agree completely with exact published results.
The expressions developed can be used to solve bench-mark problems as an aid in
validating the "nite element and other approximate methods. They can be further
utilized in aeroelastic and/or in optimization studies. Programming the explicit
expressions has a substantial advantage in c.p.u. time over numerical methods, and
a typical gain of four-fold computational e$ciency is realized.
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APPENDIX A: A PROOF FOR THE CONDITION THAT c"1 FOR a"b

Equating a"b given by equations (13) gives

cos(//3)!cos(n/3!//3)"a/J3q. (A1)

Using simple trigonometric rules, the above equation becomes

sin(n/6!//3)"a/J3q. (A2)

Noting that tan x"sin x/(1!sin2x)1@2 and making use of the relationship
3q"a2#3b of equation (14), it can be shown with the help of equation (A2) that

tan(n/6!//3)"a/J3b. (A3)

An expansion of the above equation gives

tan(//3)"J3(Jb!a)/(a#3Jb) (A4)

Using the trigonometric relationship cosx"1/(1#tan2x)1@2, equation (A4)
gives

cos(//3)"(a#3Jb)/2J3q (A5)

Now cos/ can be related to cos(//3) as follows:

cos/"4cos3(//3)!3cos(//3). (A6)

Substituting for cos(//3) from equation (A5) into equation (A6) gives

cos/"(18ab!2a3)/M2(a2#3b)3@2N. (A7)

Comparison of equation (A7) with equation (14) suggests that for the above
equation to be valid c must be equal to one. Thus the condition for a"b is c"1
which correspond to x "0, i.e. the case for the Bernoulli}Euler beam.
a
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